The equivariant Euler characteristic of moduli spaces of curves.

نویسنده

  • E. Gorsky
چکیده

We give a formula for the Sn-equivariant Euler characteristics of the moduli spaces Mg,n of genus g curves with n marked points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Sn-equivariant Euler characteristic of moduli spaces of hyperelliptic curves

The generating function for Sn-equivariant Euler characteristics of moduli spaces of pointed hyperelliptic curves for any genus g ≥ 2 is calculated. This answer generalizes the known ones for genera 2 and 3 and answers obtained by J. Bergstrom for any genus and n ≤ 7 points.

متن کامل

A Geometric Parametrization for the Virtual Euler Characteristics of the Moduli Spaces of Real and Complex Algebraic Curves

We determine an expression ξs g(γ) for the virtual Euler characteristics of the moduli spaces of s-pointed real (γ = 1/2) and complex (γ = 1) algebraic curves. In particular, for the space of real curves of genus g with a fixed point free involution, we find that the Euler characteristic is (−2)s−1(1−2g−1)(g+s−2)!Bg/g! where Bg is the gth Bernoulli number. This complements the result of Harer a...

متن کامل

Equivariant Counts of Points of the Moduli Spaces of Pointed Hyperelliptic Curves

Abstract. In this article we consider the moduli space Hg,n of n-pointed smooth hyperelliptic curves of genus g. In order to get cohomological information we wish to make Sn-equivariant counts of the numbers of points defined over finite fields of this moduli space. We find that there are recursion formulas in the genus that these numbers fulfill. Thus, if we can make Sn-equivariant counts of H...

متن کامل

Permutation - Equivariant Quantum K - Theory

K-theoretic Gromov-Witten (GW) invariants of a complex algebraic manifold X are defined as super-dimensions of sheaf cohomology of interesting bundles over moduli spaces of n-pointed holomorphic curves in X. In this paper, we introduce K-theoretic GW-invariants cognizant of the Sn-module structure on the sheaf cohomology, induced by renumbering of the marked points, and compute such invariants ...

متن کامل

Counting Lattice Points in Compactified Moduli Spaces of Curves

We define and count lattice points in the moduli spaceMg,n of stable genus g curves with n labeled points. This extends a construction of the second author for the uncompactified moduli spaceMg,n. The enumeration produces polynomials with top degree coefficients tautological intersection numbers onMg,n and constant term the orbifold Euler characteristic ofMg,n. We also prove a recursive formula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009